
1. COMPARISON INEQUALITIES

The study of the maximum (or supremum) of a collection of Gaussian random variables is of fundamen-
tal importance. In such cases, certain comparison inequalities are helpful in reducing the problem at hand
to the same problem for a simpler correlation matrix. We start with a lemma of this kind and from which
we derive two important results - Slepian’s inequality and the Sudakov-Fernique inequality8.

Lemma 1 (J.P. Kahane). Let X and Y be n×1 mutivariate Gaussian vectors with equal means, i.e., E[Xi] = E[Yi] for
all i. Let A = {(i, j) : σX

i j < σY
i j} and let B = {(i, j) : σX

i j > σY
i j}. Let f : Rn →R be any C2 function all of whose partial

derivatives up to second order have subgaussian growth and such that ∂i∂ j f ≥ 0 for all (i, j) ∈ A and ∂i∂ j f ≤ 0 for all
(i, j) ∈ B. Then, E[ f (X)]≤ E[ f (Y )].

Proof. First assume that both X and Y are centered. Without loss of generality we may assume that X and Y
are defined on the same probability space and independent of each other.

Interpolate between them by setting Z(θ) = (cosθ)X +(sinθ)Y for 0≤ θ≤ π
2 so that Z(0) = X and Z(π/2) =

Y . Then,

E[ f (Y )]−E[ f (X)] = E
[Z π/2

0

d
dθ

f (Z(θ))dθ
]

=
Z π/2

0

d
dθ

E[ f (Zθ)]dθ.

The interchange of expectation and derivative etc., can be justified by the conditions on f but we shall omit
these routine checks. Further,

d
dθ

E[ f (Zθ)] = E[∇ f (Zθ) · Ż(θ)] =
n

∑
i=1

{−(sinθ)E[Xi∂i f (Zθ)]+(cosθ)E[Yi∂i f (Zθ)]} .

Now use Exercise 14 to deduce (apply the exercise after conditioning on X or Y and using the independence
of X and Y ) that

E[Xi∂i f (Zθ)] = (cosθ)
n

∑
j=1

σX
i jE[∂i∂ j f (Zθ)]

E[Yi∂i f (Zθ)] = (sinθ)
n

∑
j=1

σY
i jE[∂i∂ j f (Zθ)].

Consequently,

d
dθ

E[ f (Zθ)] = (cosθ)(sinθ)
n

∑
i, j=1

E[∂i∂ j f (Zθ)]
(
σY

i j−σX
i j
)
.(1)

The assumptions on ∂i∂ j f ensure that each term is non-negative. Integrating, we get E[ f (X)]≤ E[ f (Y )].
It remains to consider the case when the means are not zero. Let µi = E[Xi] = E[Yi] and set X̂i = Xi−µi and

Ŷi = Yi− µi and let g(x1, . . . ,xn) = f (x1 + µ1, . . . ,xn + µn). Then f (X) = g(X̂) and f (Y ) = g(Ŷ ) while ∂i∂ jg(x) =
∂i∂ j f (x + µ). Thus, the already proved statement for centered variables implies the one for non-centered
variables. !

Special cases of this lemma are very useful. We write X∗ for maxi Xi.

Corollary 2 (Slepian’s inequality). Let X and Y be n× 1 mutivariate Gaussian vectors with equal means, i.e.,
E[Xi] = E[Yi] for all i. Assume that σX

ii = σY
ii for all i and that σX

i j ≥ σY
i j for all i, j. Then,

(1) For any real t1, . . . , tn, we have P{Xi < ti for all i}≥ P{Yi < ti for all i}.

(2) X∗ ≺ Y ∗, i.e., P{X∗ > t}≤ P{Y ∗ > t} for all t.

8The presentation here is cooked up from Ledoux-Talagrand (the book titled Probability on Banach spaces) and from Sourav Chat-
terjee’s paper on Sudakov-Fernique inequality. Chatterjee’s proof can be used to prove Kahane’s inequality too, and consequently
Slepian’s, and that is the way we present it here.
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Proof. In the language of Lemma 1 by taking B⊆ {(i, i) : 1≤ i≤ n}while A = /0. We would like to say that the
first conclusion follows by simply taking f (x1, . . . ,xn) = ∏n

i=1 1xi<ti . The only wrinkle is that it is not smooth.
by approximating the indicator with smooth increasing functions, we can get the conclusion.

To elaborate, let ψ ∈ C∞(R) be an increasing function ψ(t) = 0 for t < 0 and ψ(t) = 1 for t > 1. Then
ψε(t) = ψ(t/ε) increases to 1t<0 as ε ↓ 0. If fε(x1, . . . ,xn) = ∏n

i=1 ψε(xi− ti), then ∂i j f ≥ 0 and hence Lemma 1
applies to show that E[ fε(X)]≤ E[ fε(Y )]. Let ε ↓ 0 and apply monotone convergence theorem to get the first
conclusion.

Taking ti = t, we immediately get the second conclusion from the first. !

Here is a second corollary which generalizes Slepian’s inequality (take m = 1).

Corollary 3 (Gordon’s inequality). Let Xi, j and Yi, j be m×n arrays of joint Gaussians with equal means. Assume
that

(1) Cov(Xi, j,Xi,!)≥ Cov(Yi, j,Yi,!),

(2) Cov(Xi, j,Xk,!)≤ Cov(Yi, j,Yk,!) if i (= k,

(3) Var(Xi, j) = Var(Yi, j).

Then

(1) For any real ti, j we have P

{
T

i

S

j
{Xi, j < ti, j}

}
≥ P

{
T

i

S

j
{Yi, j < ti, j}

}
,

(2) min
i

max
j

Xi, j ≺min
i

max
j

Yi, j.

Exercise 4. Deduce this from Lemma 1.

Remark 5. The often repeated trick that we referred to is of constructing the two random vectors indepen-
dently on the same space and interpolating between them. Then the comparison inequality reduces to a
differential inequality which is simpler to deal with. Quite often different parameterizations of the same
interpolation are used, for example Zt =

√
1− t2X + tY for 0≤ t ≤ 1 or Zs =

√
1− e−2sX +e−sY for−∞≤ s≤∞.

2. SUDAKOV-FERNIQUE INEQUALITY

Studying the maximum of a Gaussian process is a very important problem. Slepian’s (or Gordon’s) in-
equality helps to control the maximum of our process by that of a simpler process. For example, if X1, . . . ,Xn
are standard normal variables with positive correlation between any pair of them, then maxXi is stochasti-
cally smaller than the maximum of n independent standard normals (which is easy). However, the condi-
tions of Slepian’s inequality are sometimes restrictive, and the conclusions are much stronger than required.
The following theorem is a more applicable substitute.

Theorem 6 (Sudakov-Fernique inequality). Let X and Y be n×1 Gaussian vectors satisfying E[Xi] = E[Yi] for all
i and E[(Xi−Xj)2]≤ E[(Yi−Yj)2] for all i (= j. Then, E[X∗]≤ E[Y ∗].

Remark 7. Assume that the means are zero. If E[X2
i ] = E[Y 2

i ] for all i, then the condition E[(Xi −Xj)2] ≤
E[(Yi−Yj)2] is the same as E[XiXj] ≥ E[YiYj]. Then Slepian’s inequality would apply and we would get the
much stronger conclusion of X∗ ≺ Y ∗. The point here is the relaxing of the assumption of equal variances
and settling for the weaker conclusion which only compares expectations of the maxima.

Proof. The proof of Lemma 1 can be copied exactly to get (1) for any smooth function f with appropriate
growth conditions. Now we specialize to the function fβ(x) = 1

β log∑n
i=1 eβxi where β > 0 is fixed. Let pi(x) =
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eβxi

∑n
i=1 eβxi

, so that (p1(x), . . . , pn(x)) is a probability vector for each x ∈ Rn. Observe that

∂i f (x) = pi(x)

∂i∂ j f (x) = βpi(x)δi, j−βpi(x)p j(x).

Thus, (1) gives

1
β(cosθ)(sinθ)

d
dθ

E[ fβ(Zθ)] =
n

∑
i, j=1

(σY
i j−σX

i j)E [pi(x)δi, j− pi(x)p j(x)]

=
n

∑
i=1

(σY
ii −σX

ii )E[pi(x)]−
n

∑
i, j=1

(σY
i j−σX

i j)E[pi(x)p j(x)]

Since ∑i pi(x) = 1, we can write pi(x) = ∑ j pi(x)p j(x) and hence

1
β(cosθ)(sinθ)

d
dθ

E[ fβ(Zθ)] =
n

∑
i, j=1

(σY
ii −σX

ii )E[pi(x)p j(x)]−
n

∑
i, j=1

(σY
i j−σX

i j)E[pi(x)p j(x)]

= ∑
i< j

E[pi(x)p j(x)]
(
σY

ii −σX
ii +σY

j j−σX
j j−2σY

i j +2σX
i j
)

= ∑
i< j

E[pi(x)p j(x)]
(
γX

i j− γY
i j
)

where γX
i j = σX

ii + σX
j j −2σX

i j = E[(Xi−µi−Xj + µ j)2]. Of course, the latter is equal to E[(Xi−Xj)2]− (µi−µ j)2.

Since the µi are the same for X as for Y we get γX
i j ≤ γY

i j. Clearly pi(x)≥ 0 too. Therefore, d
dθ E[ fβ(Zθ)]≥ 0 and

we get E[ fβ(X)]≤ E[ fβ(Y )]. Letting β ↑ ∞ we get E[X∗]≤ E[Y ∗]. !

Remark 8. This proof contains another useful idea - to express maxi xi in terms of fβ(x). The advantage is
that fβ is smooth while the maximum is not. And for large β, the two are close because maxi xi ≤ fβ(x) ≤
maxi xi + logn

β .

If Sudakov-Fernique inequality is considered a modification of Slepian’s inequality, the analogous mod-
ification of Gordon’s inequality is the following. We leave it as exercise as we may not use it in the course.

Exercise 9. (optional) Let Xi, j and Yi, j be n×m arrays of joint Gaussians with equal means. Assume that

(1) E[|Xi, j−Xi,!|2]≥ E[|Yi, j−Yi,!|2],

(2) E[|Xi, j−Xk,!|2]≤ E[|Yi, j−Yk,!|2] if i (= k.
Then E[min

i
max

j
Xi, j]≤ E[min

i
max

j
Yi, j].
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